

# Nanodiamond - decorated PEO – coating: biocompatibility studies

Karlis Grundsteins, <u>Kateryna Diedkova</u>, Viktoriia Korniienko, Anita Stoppel, Sascha Balakin, Kaspars Jekabsons, Una Riekstine, Natalia Waloszczyk, Agata Kołkowska, Yuliia Varava, Joerg Opitz, Wojciech Simka, Natalia Beshchasna, Maksym Pogorielov



















IHME, Global Burden of Disease

## **CARDIOVASCULAR DISEASE** The World's Number 1 Killer

Cardiovascular diseases are a group of disorders of the heart and blood vessels, commonly referred to as **heart disease** and **stroke**.



#### GLOBAL CAUSES OF DEATH RISK FACTORS FOR CVD



www.worldheart.org

(O) worldheartfederation



Reference data: © EuroGeographics, © FAO (UN), © TurkStat Source: European Commission - Eurostat/GISCO

https://www.eea.europa.eu/publications/beating-cardiovascular-disease





UNIVERSITY OF LATVIA



## The aims of research



- To improve the surface characteristics of NiTi stents by incorporating detonated
- nanodiamonds (NDs) into plasma electrolytic oxidation (PEO) coatings to protect

against atherosclerosis reversal.

#### **General concept of the research**



One-wire peripheral nitinol stent



#### **Experimental protocol**







## **Results of biocompatibility studies**







Cytotoxicity of ND examined by CCK-8 assay with human dermal fibroblasts during 3-days of co-cultivation. a) – row data with ND cell-free control and b) – data after the ND optical density correction. "OD 450" – optical density measured with 450 nm; "C+" – positive control (without ND), "C-" – cell-free control with cell media only



CCK-8 assay data on proliferation of human dermal fibroblast during the 7day experiment (diagram) with fluorescent images of nuclei (blue) and cytoskeleton staining (red) on day 7 of cultures on metal NiTi samples. Where: PEO-1 - 50 V, PEO-2 - 60 V, PEO-3 - 70 V, ND1= 0,04 mg and ND2= 0,08 mg





### Conclusions





The modified NiTi surface demonstrated high biocompatibility, adhesion and proliferation of human dermal fibroblasts.

The obtained results offer a novel and promising approach to significantly improving the performance and long-term outcomes of nitinol stents in the treatment of CVD.

These advances have the potential to greatly impact cardiovascular care and contribute to improved patient outcomes in the future.



#### Acknowledgments









#### HybbiStent

(Hybrid Biodegradable Coating for One-Wire Peripheral Nitinol Stent for Prevention of Restenosis and Plaque Formation)



INSTITUTE OF ATOMIC PHYSICS AND SPECTROSCOPY



# Dziękujemy za uwagę!

# Thank you for your attention!

Paldies par jūsu uzmanību!