

Biological effect of silver nanoparticles in PEO coating

Implant-tissue interface

Bone-implant integration

What happens after the implantation?

Clinical outcomes

Implant infection

https://doi.org/10.3389/fimmu.2019.01724

Strategies for surface modification

Silver nanoparticles

Korniienko V, et al. Applied Nanoscience, Volume 12, Issue 4, p.1061-1070 https://doi.org/ 10.1007/s13204-021-01808-5

Silver ions release

	Ag	NPs-1	AgNPs-2		
	μg/mL	%	μg/mL	%	
Silver content in the working solution	129.0	-	194.7	-	
The content of silver ions in the supernatant on the first day after preparation	2.3	1.7	19.7	10.1	
The content of silver ions in the supernatant on the second day after preparation	1.1	0.85	25.7	13.1	

AgNPs antibacterial effects

Minimum inhibitory concentration

AgNPs-1 AgNPs-2 Control

AgNPs antibiofilm effects

Ag Nanoparticle-Decorated PEO coating of ZrNb Alloy

SEM image (a) and EDX spectra (b) of Ag nanoparticles

SEM image of the ZrNb alloy surface before (a) and after (b) the plasma electrolytic oxidation (PEO) process with pore distribution (c)

EDX and XPS of anodizing surface

Bacterial adhesion and osteoblast proliferation

Ag Nanoparticle-Decorated PEO coating of Ti Alloy

SEM image of AgNPs with EDX data

Sample	Ti	0	С	Ca	Р	Ag
TiP-250	52.6	12.3	5.2	16.8	13.1	-
TiP-250-Ag	49.2	9.8	7.2	17.6	15.9	0.3
TiP-300	57.3	7.5	4.0	19.7	11.5	-
TiP-300-Ag	54.8	7.9	6.1	18.3	12.2	0.7

SEM images (a) and pore size distribution (b) after PEO of Ti implants

The semi-quantitative EDX analysis results, wt.%

Cell proliferation, collagen production and bacteria adhesion/inhibition

ZnO Nanoparticle-Decorated PEO coating of TiZr Alloy

UNIVERSITY

OF LATVIA

AgNPs incorporation in 3D scaffolds

The basic cells parameters of different samples with TPMS architectures

The destruction behavior of porous scaffolds with different architecture

AgNPs incorporation in 3D scaffolds

The SEM images of scaffolds after the

PEO treatment

The semi-quantitative EDX analysis of scaffolds after the PEO process

Sample	0	Al	Р	Cl	Са	Ti	v	Ag	Ca/P ratio	Sum
P330-PEO	37.9	3.1	2.7	0.1	0.4	53.6	2.2	-	0.2	100.0
P330-PEO-Ag	34.7	2.1	2.2	4.2	1.6	41.7	1.8	11.7	0.7	100.0
D330-PEO	37.9	3.1	2.7	0.1	0.4	53.6	2.2	_	0.2	100.0
D330-PEO-Ag	34.0	2.7	1.4	3.9	_	48.8	2.3	6.8	_	100.0
1330-PEO	39.2	2.2	37	0.2	2.6	50.7	15	_	0.7	100.0
1330-PEO-Ag	37.2	3.2	2.2	1.0	1.0	46.8	2.4	6.1	0.5	100.0

The SEM image of I330-PEO-Ag sample cross section

The SEM images of cross-sections of scaffolds after the PEO process

AgNPs incorporation in 3D scaffolds

Primitive-520

Primitive-520-PEO

Primitive-520-PEO-Ag

Resazurin reduction assay demonstrating U2OS adhesion on day one and proliferation in 3 and 7 days (1) with fluorescent DAPI staining in day 7 and the absorbance intensity of Sirius red

Bacteria survival rate in different time-points (2, 4, 6 and 24 hours) after S. aureus co-cultivation calculated in Log10 CFU

Craniofacial reconstruction using 3D personalized implants

CAD-model of the upper part of mandible from the patient (A) and real three-dimensional implant

Α

Patient with Goldenhar syndrome (hemifacial microsomia, syndrome of the first and second brachial arches, craniofacial microsomia, otomandibular dysostosis and lateral facial dysplasia)

Optical and SEM images of an implant before (upper row) and after (bottom row) PEO processing

Patient with a high-energy trauma a fire-wound injury from a Kalashnikov

From research to market

DENTAL IMPLANT WITH PEO SURFACE

Plasma electrolytic oxidation (PEO)

- The application of PEO coating for surface modification provides better adhesion of osteoblasts to the implant surface compared to the SLA surface.
- The presence of over 9%!!! of Ca ions on the PEO surface provides additional stimuli for cell adhesion and proliferation.
- PEO is the main factor influencing cell adhesion and proliferation..

The main problems in PEO with AgNPs

- Unpredictable concentration of AgNPs in PEO layer
- Unpredictable AgNPs
 distribution
- Contact VS ion-release mechanism of action
- Moderate cell toxicity

Main outcomes

- PEO can provide stable distribution of AgNPs on implant layer
- Long-term silver ions release
- AgNPs decorated layer can prevent bacteria adhesion in first term after the implantation
- Prevention of biofilm formation

Acknowledgement

VARIANT - Design and implementation of silver-based nanoparticles for combating antibiotic resistance

HORIZON-Europe MSCA-SE-2021 project "Towards development of new antibacterial strategy for dentistry" (project No 101086441)

